Compound |
Test |
Test species |
Ecotox value |
Reference |
As
(V) |
14 day
survival
artificial soil |
Eisenia
andrei
adults |
LC50
472 ppm |
Vaughan
& Greenslade 1998 |
28 day
reproduction
artificial soil |
Folsomia
candida
adults |
NOEC 10
ppm
EC50 119 ppm |
Vaughan
& Greenslade 1998 |
growth/
reproduction |
E. fetida |
cocoon production
reduced by 56% at 68 ppm |
Fischer & Koszorus 1992 |
Cr (VI) |
60 day survival |
Octochaetus
pattoni |
LC50 15 ppm
LC75 2 ppm |
Abbasi & Soni 1983 |
61 day survival in field |
Pheretima posthuma |
LC100 at 10 ppm |
Abbasi & Soni 1981 |
2 wk growth |
Eisenia fetida |
LOEC 625 ppm |
Molnar et al. 1989 |
Cu
|
14 day survival
(artificial soil) |
E fetida |
LC50 643 ppm |
Neuhauser et al. 1985 |
14 day survival
(artificial soil) |
E. fetida |
LC50 683 ppm
|
Spurgeon et al. 1994 |
14 day survival
(peat soil : 43% OC) |
Octolasium cyaneum |
LC50 2500 ppm
|
Streit and Jaggy 1983 |
14 day survival
(Rendzina soil : 14% OC) |
Octolasium cyaneum |
LC50 850 ppm
|
Streit and Jaggy 1983 |
14 day survival
(Brown soil: 3.2% OC) |
Octolasium cyaneum |
LC50 180 ppm
|
Streit and Jaggy 1983 |
14 day survival
(artificial soil) |
E. fetida |
LC50 836 ppm |
Spurgeon and Hopkin 1995 |
8 wk survival
(artificial soil) |
E. fetida |
LC50 555 ppm
NOEC 210 ppm |
Spurgeon et al. 1994 |
8 wk survival |
E. fetida |
LC50 640 ppm |
Khalil et al. 1996 |
12 wk survival |
Lumbricus rubellus |
NOEC 150 ppm
LOEC 1000 ppm |
Ma 1982 |
14 day growth |
E. fetida |
NOEC 32 ppm
LOEC 100 ppm |
van Gestel et al. 1991 |
21 day growth
(artificial soil) |
E fetida |
EC50 601 ppm |
Spurgeon & Hopkin 1995 |
6 wk growth |
E. fetida |
NOEC 1000 ppm
LOEC 2000 ppm |
Neuhauser et al. 1984 |
6 wk growth (sandy soil: 5.7 % OC) |
L. rubellus |
NOEC 130 mg/kg
LOEC 370 mg/kg |
Ma 1984 |
6 wk growth (loam soil: 5.5% OC) |
L. rubellus |
NOEC 370 mg/kg |
Ma 1984 |
21 day reproduction |
E. fetida |
NOEC 29 ppm |
Surgeon and Hopkin 1995 |
21 day reproduction (artificial soil) |
Eisenia andrei |
NOEC 120 ppm
LOEC 180 ppm |
van Gestel et al. 1989 |
6 wk reproduction |
E. fetida |
NOEC 1000 ppm
LOEC 2000 ppm |
Neuhauser et al. 1984 |
6 wk reproduction
(sandy soil: 5.7% OC) |
L. rubellus |
NOEC 54 ppm
LOEC 131 ppm |
Ma 1984 |
6 wk reproduction (loam soil: 5.5% OC) |
L. rubellus |
NOEC 13 ppm
LOEC 63 ppm |
Ma 1984 |
8 wk reproduction |
E. fetida |
NOEC 300 ppm
LOEC 500 ppm |
Malecki et al. 1982 |
8 wk reproduction |
Aporrectodea caliginosa |
EC50 186 ppm
NOEC 50 ppm
LOEC 100 ppm |
Khalil et al. 1996 |
8 wk reproduction
(artificial soil) |
E. fetida |
EC50 53.3 ppm
NOEC 32 ppm |
Spurgeon et al. 1994 |
20 wk reproduction |
E. fetida |
NOEC 500 ppm
LOEC 1000 ppm |
Malecki et al. 1982 |
reproduction |
L. rubellus |
EC50 122 ppm |
Streit & Jaggy 1983 |
reproduction |
A. caliginosa |
EC50 68 ppm |
Streit & Jaggy 1983 |
reproduction |
Allolobophora chlorotica |
EC50 51 ppm |
Streit & Jaggy 1983 |
OC = organic carbon
Toxicity Values from the Literature for Terrestrial
Plants
Compound |
Species |
|
NOEC
(mg/kg) |
LOEC
mg/kg) |
End point |
Reference |
As (V) |
corn |
28
day
loam sand |
10 |
100 |
seedling wet weight |
Woolson et al. 1971 |
lettuce |
5 day
silica sand |
11.6 |
|
germination |
Vaughan
& Greenslade 1998 |
Cr (VI)
|
lettuce |
14 day
loam |
0.35 |
1.8 |
shoot wet weight |
Adema & Henzen 1989 |
tomato |
14 day
loam |
3.2 |
6.8 |
shoot wet weight |
Adema & Henzen 1989 |
oats |
14 day
loam |
3.5 |
7.4 |
shoot wet weight |
Adema & Henzen 1989 |
soya
bean |
3 day loam |
10 |
30 |
shoot wet weight |
Turner & Rust 1971 |
tomato |
14 day
humic sand |
10 |
21 |
shoot wet weight |
Adema & Henzen 1989 |
oats |
14 day
humic sand |
11 |
31 |
shoot wet weight |
Adema and Henzen 1989 |
Cu
|
lettuce |
5 day
silica sand |
<7.8 |
|
germination |
Vaughan
& Greenslade 1998 |
Lettuce |
5 day
silica sand |
15.6 |
|
biomass |
Vaughan & Greenslade 1998 |
bluestem |
84 day
sand |
|
100 |
root & shoot weight |
Miles & Parker 1979 |
bush beans |
17 day loam |
100 |
200 |
leaf weight |
Wallace et al. 1977 |
Toluene
|
corn |
Clay |
|
200 |
wet weight |
Overcash et al. 1982 |
soya
bean |
|
|
20 000 |
wet weight |
|
soya been |
Loam
pH = 4 |
|
2000 |
emergence |
|
corn |
|
|
20000 |
emergence |
|
soya been |
Loam
pH = 6 |
|
200 |
wet weight |
|
corn |
|
|
20000 |
|
|
References
Abbasi, S.A., Soni, R. 1983: Stress-induced enhancement of
reproduction in earthworm Octochaetus pattoni exposed to chromium (VI)
and mercury (II) - Implications in environmental management. Int. J.
Environ. Stud. 22: 43-47.
Adema, D. M., Henzen, L. 1989: A comparison of plant
toxicities of some industrial chemicals in soil culture and soiless
culture. Ecotoxicol. Environ. Saf. 18:219-229.
Fischer, E., Koszorus, L. 1992: Sublethal effects,
accumulation capacities and elimination rates of As, Hg, and Se in the
manure worm, Eisenia fetida (Oligochaeta, Lubricidae). Pedobiologia
36: 172-178.
Khalil,M.A., Abdel-Lateif, H.M., Bayoumi, B.M., van
Straalen, N.M., van Gestel, C.A.M. 1996: Effects of metals and metal
mixtures on survival and cocoon production of the earthworm Aporrectodea
caliginosa. Pedobiologia 40: 548-556.
Ma, W-C. 1982: The influence of soil properties and
worm-related factors on the concentration of heavy metals in earthworms.
Pedobiologia 24: 109-119.
Ma, W.C. 1984: Sublethal toxic effects of copper on
growth, reproduction and litter breakdown activity in the earthworm Lumbricus
rubellus, with observations on the influence of temperature and soil
pH. Environmental Pollution (Series A) 33: 207-219.
Malecki, M.R., Neuhauser, E.F., Loehr, R.C. 1982: The
effects of metals on the growth and reproduction of Eisenia foetida
(Oligochaeta, Lumbricidae). Pedobiologia 24: 129-137.
Miles, L. J., Parker, G. R. 1979: Heavy metal
interactions for Andropogon scoparius and Rudbeckia hirta
grown on soil from urban and rural sites with heavy metal additions.
J. Environ. Qual. 8:443-449.
Molnar, L., Fischer, E., Kallay, M. 1989: Laboratory
studies on the effect, uptake and distribution of chromium in Eisenia
foetida (Annelida, Oligochaeta). Zool. Anz. 223: 57-66.
Neuhauser, E.F., Malecki, M.R., Loehr, R.C. 1984:
Growth and reproduction of the earthworm Eisenia fetida after
exposure to sublethal concentrations of metals. Pedobiologia 27:
89-97.
Neuhauser, E.F., Lochr, R.C., Milligan, D.L.,
Malecki, M.R. 1985: Toxicity of metals to the earthworm Eisenia
foetida. Biology of Fertile Soil 1: 149-152.
Overcash, R. M., Weber, J. B., Miles, M. L. 1982:
Behaviour of organic priority pollutants in the terrestrial system:
Di-n-butyl phthalate ester, toluene, and 2, 4 dinitrophenol.
UNC-WRRI-82-171. University of North Carolina: Water Resources Research
Institute.
Soni, R., Abbasi, S.A. 1981: Mortality and
reproduction in earthworm Pheretima posthuma exposed to chromium
(VI). Intern. J. Environ. Studies 17: 147-149.
Spurgeon, D.J., Hopkins, S.P., Jones, D.T. 1994:
Effects of cadmium, copper, lead, and zinc on growth, reproduction and
survival of the earthworm Eisenia fetida (Savigny): Assessing the
environmental impact of point-source metal contamination in terrestrial
ecosystems. Environmental Pollution 84: 123-130.
Spurgeon, D.J., Hopkin, S.P., 1996: Effects of
metal-contaminated soils on the growth, sexual development, and early
cocoon production of the earthworm Eisenia fetida, with
particular reference to zinc. Ecotox. Environ. Safety 35:
86-95.
Streit, B., Jaggy, A. 1983: Effect of soil tye on
copper toxicity and copper uptake in Octolasium cyaneum
(Lumbricidae). In: (Lebrun, Ph (Ed.) New Trends in Soil Biology,
Ottignies Louvain la Neuve, pp 369-375.
Turner, M. A., Rust, R. H. 1971: Effects of chromium
on growth and mineral nutrition of soybeans. Soil Sci.Soc.Am.Proc.
35:755- 758.
van Gestel, C.A.M., van Dis, W.A., Dirven-van
Breemen, E.M. Sparenburg, P.M., Baerselman, R. 1991: Influence of
cadmium, copper, and pentachlorophenol on growth and sexual development
of Eisenia andrei (Oligochaeta; Annelida). Biol.Fertil.Soil.
12: 117-121.
van Gestel,C.A.M.; van Dis,W.A.; van Breemen,E.M.;
Sparenburg,P.M. 1989: Development of a standardized reproduction
toxicity test with the earthworm species Eisenia fetida andrei
using copper, pentachlorophenol, and 2,4-dichloroaniline. Ecotox.Environ.Safety
18: 305-312.
Vaughan, G.T, Greenslade, P.M.
1998 Sensitive bioassays for risk assessment of contaminated
soils. Final report CET/IR 55. Commonwealth Scientific
and Industrial Research Organisation, Sydney, NSW, Australia.
Wallace, A., Alexander, G. V., Chaudhry, F. M. 1977
Phytotoxicity and some interactions of the essential trace metals iron,
manganese, molybdenum, zinc, copper, an boron. Commun.Soil Sci.Plant
Anal. 8:773-780.
Woolson, E. A., Axley, J. H., Kearney, P. C. 1971:
Correlation between available soil arsenic, estimated by six methods and
response of corn (Zea mays L.). Soil Sci.Soc.Am.Proc.
35:101-105.
|